

Experimenting with Degree

Stephanie Solt¹ and Nicole Gotzner²
ILLC Amsterdam¹, ZAS Berlin¹ & Humboldt-Universität zu Berlin²

OLDT-UNIVERSITA,

UNIVERSITY OF AMSTERDAM

SALT 22, University of Chicago

Research Questions

What notion of **degree**, if any, underlies the interpretation of (relative) gradable adjectives in their positive form?

- How do speakers' judgments of gradable adjectives change across contexts (comparison classes C)?
- On the basis of what <u>measures</u> can these judgments be described?
 - Rank Order

Example: [Fred is tall] c =1 iff Fred ∈ tallest 1/3 of Cs

Ordinal Degree (derived from ordering on C)

Example: [Fred is tall] c =1 iff HEIGHT(Fred) ∈ top 1/3 of heights of Cs

Measurement Degree (scale with distance metric)

Example: $[[Fred is tall]]^c = 1$ iff HEIGHT(Fred) > mean_{x∈C}HEIGHT(x)

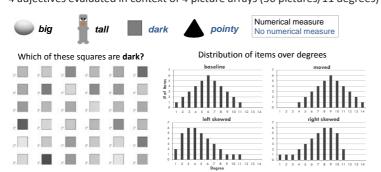
NB: Truth conditions are for purposes of illustration; no account of vagueness of GAs

	Delineation (strong)	Degree as		
		Equiv. class	Abstraction	Eq. class w/measures
Rank Order	Yes	Yes	Yes	Yes
Ordinal Degree	No	Yes	Yes	Yes
Measurement Degree	No	No	Yes	Only adj. w/num. measure

Experiment 1

Methodology: Adjective/Picture Matching (Barner & Snedeker 2008; Schmidt et al. 2009)

4 adjectives evaluated in context of 4 picture arrays (36 pictures/11 degrees)



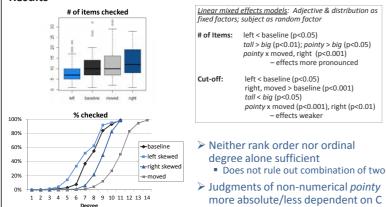
- n=194 (mean age: 35.7, 124 female); 1 adjective/distribution per subject (rotated)
- Online via Amazon Mturk (U.S. IP address; screened for native English)

Predictions

If rank order alone sufficient: If ordinal degree alone sufficient:

- # of items checked same across conditions
- 'cut-off' same for baseline/left/right; higher for moved

Results



REFERENCES: Bale, A.C. (2008). A universal scale of comparison. Linguistics &Philosophy 31, 1-55. Barner, D. & Snedeker, J. (2008). Compositionality and statistics in adjective acquisition. Child Development 79, 594-608. Kennedy (2007). Vagueness and grammar. Linguistics & Philosophy 31, 1-45. Klein, E. (1991). Comparatives in: A von Stechow & D. Wunderlich (eds.), Semantik: Ein Internationales Handbuch der Zeitgenossischen Forschung, 673-691. Berlin: Walter de Gruyter. Schmidt, L.A., Goodman, N.D., Barner, D. & Tenebaum, J.B. (2009). How tall is tall? Compositionality, statistics and gradable adjectives. Proceedings of the 31* Annual Conference of the Cognitive Science Society. Cresswell, M.J. (1976). The semantics of degree. In: B.H. Partee (ed.), Montague Grammar, 261-292. New York: Academic Press. Stechow, A. von (1984). Comparing semantic theories of comparison. Journal of Semantics 3, 1-77.

Theories of Gradability

Delineation (Klein 1980)

Gradable adjectives denote partial functions that induce a three-way <u>partition</u> on a comparison class C

not tall extension gap tall

- Not explicitly based on degrees
- Strongest version: no notion of degree at all involved

<u>Degree</u> (Cresswell 1976; von Stechow 1984; Kennedy 2007; a.o.) Gradable adjectives relate individuals to degrees on a scale

 $[[tall]] = \lambda d\lambda x.HEIGHT(x) \ge d$

 $[\![Fred \ is \ tall \]\!] = 1 \ iff \ HEIGHT(fred) > d_{Std}, \ where \ d_{Std} = f(C)$

■ Degree as Equivalence Class (Cresswell 1976; Klein 1991)

Relation on domain: $x \gtrsim_{\mathsf{HEIGHT}} y$ 'x has as least as much height as y' $\mathsf{HEIGHT}(\mathsf{fred}) = \{x: x \sim_{\mathsf{HEIGHT}} \mathsf{fred}\}$ - ordinal scale only

■ Degree as **Abstraction** (von Stechow 1984)

 $\mathsf{HEIGHT}(\mathsf{fred}) = n \in \mathbb{R}$ (a number) - scale with distance metric

- Degree as Equivalence Class w/Numerical Measures (Bale 2008)
 - For adjectives with corresponding numerical measurement systems, measurements (e.g. 6 feet) participate in relation as individuals
 - Derived scale isomorphic to that associated w/measurement system

Experiment 2

Methodology: As in Experiment 1

- 3 adjectives (big, tall, dark); 3 distributions
- Designed to distinguish ordinal degree vs. measurement degree

■ n=170 native English speakers (mean age: 30.4, 111 female)

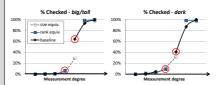
Predictions

If ordinal degree sufficient: baseline = rank equivalent

If not, must infer abstract measurement degree

If measurement degree depends on numerical measure: $dark \neq big/tall$

Results



<u>Linear mixed effects model</u>: Adjective & numerical as fixed factors; subject as random factor

% critical item checked: rank < baseline (p<0.001) non-numerical x rank, size (p<0.001) - effects less pronounced

- but rank < baseline also for nonnumerical (p<0.001)
- independent of the structure of C

 Also for adjective without measurement system

Conclusions

- Interpretation of gradable adjectives in their positive form involves degrees organized into a scale with a distance metric
 - Supports abstract theory of degree over one in which scales are derived from an ordering relation on a comparison class

Ordinal degree not sufficient; require abstract notion of degree

- Some interadjective differences -- but no evidence that scale structure depends on presence/absence of measurement system
- For the future ...
 - ... More adjectives (numerical/non-numerical; evaluative)
 - ... Overt comparison classes (tall for a boy)