How many *most’s*?

Stephanie Solt
Zentrum für Allgemeine Sprachwissenschaft

The Broader Issue

<table>
<thead>
<tr>
<th>Majority</th>
<th>• Fred has read most Shakespeare plays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative</td>
<td>• Fred has read the most Shakespeare plays</td>
</tr>
<tr>
<td>Adjectival Superlative</td>
<td>• Fred bought the most expensive book</td>
</tr>
<tr>
<td>Superlative Quantifier</td>
<td>• Fred has read at most 15 Shakespeare plays</td>
</tr>
</tbody>
</table>

Same underlying core semantics?
Outline

- Unifying majority & relative most as many + -est (Hackl 2009)
- Degree-operator analysis of many/much
- Extension to adjectival superlative most
- Extension to superlative quantifier most
- A closer look at majority most – and a connection to analog quantity comparison
- Summary

Majority vs. Relative Most

<table>
<thead>
<tr>
<th>Out of 37 Shakespeare plays...</th>
<th>Majority</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred: 28</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>John: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred: 14</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>All other relevant individuals: <10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hackl (2009)

5

- **Most** = **many** + **-est**
 [majority & relative]

 - cf. German **die meisten**

- Availability of majority vs. relative reading parallels ambiguity in superlatives

<table>
<thead>
<tr>
<th>Fred climbed the highest mountain</th>
<th>Fred has read…</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Higher than any other mountain (Absolute)</td>
<td>…most Shakespeare plays (Majority)</td>
</tr>
<tr>
<td>• Higher than mountains climbed by any other relevant individual (Relative)</td>
<td>…the most Shakespeare plays (Relative)</td>
</tr>
</tbody>
</table>

- Ambiguity derives from 2 scope options for superlative morpheme, corresponding to 2 choices for comparison class (Heim 1999):

6

- **Semantics:**

 \[
 [[\text{-est}]](C_{(et)})(D_{(d,et)})(x)=1 \text{ iff } \\
 \forall y \in C[y \neq x \rightarrow \max\{d:D(d)(x)\} > \max\{d:D(d)(y)\}]
 \]

 defined iff \(x \in C\) and \(C\) has multiple members

 \[
 [[\text{many}]] = \lambda P_{(et)} \lambda d \lambda x. P(x) \land |x| \geq d
 \]

- **Syntax**

 [**Majority**]

 Fred has read \([DP [NP -est1 [NP d1-many Shakespeare plays]]]]\)

 [**Relative**]

 Fred \([-est1 [has read [DP the [NP d1-many Shakespeare plays]]]]\)
Hackl (2009)

Relative

Fred has read the most Shakespeare plays

Fred [-est, [has read [DP the [NP d1-many Shakespeare plays]]]]

\[C = \{Fred, Sue, Jane, Bob, \ldots\} \]

\[\forall x \in C \neg(x = Fred) \rightarrow \max\{d : \exists y[S-play(y) \land \text{read } y \land |y| \geq d] \} > \max\{d : \exists y[S-play(y) \land \text{read } y \land |y| \geq d] \} \]

• True iff # of plays Fred read exceeds # read by all other members of C

Hackl (2009)

Majority

Fred has read most Shakespeare plays

Fred has read [DP [NP -est, [NP d1-many Shakespeare plays]]]

\[C = \{Hamlet\setminus Othello\setminus Lear, Hamlet\setminus Othello, Othello\setminus Romeo\& Juliet, \ldots\} \]

\[\exists x[S-play(x) \land \text{read } x \land \forall y[S-play(y) \Rightarrow \max\{d : |x| \geq d\} > \max\{d : |y| \geq d\}] \]

• If non-identity \((x \neq y)\) construed as non-overlap \((x \cap y = \emptyset)\),
true iff set of plays Fred read outnumbers set of plays he hasn’t read
Degree-based theory of Q-adjectives

- Most = superlative of many & much (Bresnan 1973)
- Many/much (and few/little) as degree operators (Solt 2009, 2010)
 \[
 [[\text{many}]] = [[\text{much}]] = \lambda d.\lambda x.P_{(d_t)}(d)
 \]
- Motivated by non-quantificational/non-adjectival uses
 Many fewer than 100 students attended to lecture
- Quantificational uses involve null measure function MEAS and quantification via existential closure \(\exists\)
 Fred is diligent; in fact, he is too much so

Applied to (the) Most

- Fred has read the most Shakespeare plays

\[
\begin{align*}
\text{Fred [-est}_2 [d_2\text{-many}_1 [\text{has read } & \text{DP the } \{\text{MeasP } d_1\text{-MEAS } [\text{NP } S. \text{ plays}]\}]])] = \\
&\lambda d.\lambda x.\exists y[S\text{-play}(y) \land x \text{ read } y \land |y| \geq d_1]
\end{align*}
\]

\[
\begin{align*}
\text{[[has read the } & d_1\text{-MEAS Shakespeare plays]}} = \\
&\lambda d.\lambda x.\exists y[S\text{-play}(y) \land x \text{ read } y \land |y| \geq d_1]
\end{align*}
\]

\[
\begin{align*}
\text{[[d}_2\text{-many(has read the } & d_1\text{-MEAS Shakespeare plays)]}} = \\
&\lambda x.\exists y[S\text{-play}(y) \land x \text{ read } y \land |y| \geq d_2]
\end{align*}
\]

Application of -est produces same results as Hackl (2009)
Adjectival Superlative Most

- Fred bought the most expensive book

- Looks like spell-out of superlative morpheme
 - the smartest
 - the most intelligent

- Allows absolute and relative readings (like synthetic superlatives)

- Captured as (null) much + -est

Adjectival Superlative Most

- Fred bought the most expensive book

- Relative

Fred [-est₂ [d₂-much₁ [bought [DP the [NP d₁-expensive book]]]]]

[[bought the d₁-expensive book]] =

\[= \lambda d₁. \lambda x. \exists y [\text{book}(y) \land x \text{ bought } y \land \text{COST}(y) \geq d₁]\]

[[d₂-much(bought the d₁-expensive book)]] =

\[= \lambda x. \exists y [\text{book}(y) \land x \text{ bought } y \land \text{COST}(y) \geq d₂]\]

\[\rightarrow \lambda d₂. \lambda x. \exists y [\text{book}(y) \land x \text{ bought } y \land \text{COST}(y) \geq d₂]\]

- Identical set of degrees; serves as argument to -est

- Adjectival superlative most aligned to superlatives
Superlative Quantifier *Most*

- Fred has read at most 15 Shakespeare plays

- Evidence of link to superlative:
 - Paraphrasable with explicit superlative
 - The largest number of Shakespeare plays Fred could have read is 15
 - Similar use of other superlatives
 - Fred will arrive by 11 at the latest
 - Fred is 30 at the oldest
 - Cross-linguistic parallels (e.g. German):
 - Fred hat höchstens 15 Stücke von Shakespeare gelesen

- Requires a range of values (Nouwen 2010):
 - Fred invited at most 15 friends
 - Infelicitous if speaker knows precisely how many
 - Felicitous on epistemic reading
 - Fred can invite at most 15 friends
 - The students invited at most 15 friends

Parallels restriction on the superlative
- You're the best mother I have

- Existing accounts (e.g. Krifka 1999; Geurts & Nouwen 2007; Nouwen 2010) do not capture these connections
Superlative Quantifier *Most*

Fred has read...

- ... most Shakespeare plays
 - Comparison of plays
 - *Majority*

- ... the most Shakespeare plays
 - Comparison of readers
 - *Relative*

- ... at most 15 Shakespeare plays
 - Comparison of worlds
 - *Superlative Quantifier*

- Covert modality (Nouwen 2010) captured via set of accessible worlds as comparison class

\[
\langle \text{at most 15} \rangle = \lambda D_{(d)} \forall w [\langle \text{most} \rangle(Acc)(\lambda w' \lambda d. D(d) \text{ in } w')(w) \rightarrow \\
\max \{d : D(d) \text{ in } w\} = 15]
\]
Superlative Quantifier Most

\[
\forall W \forall W'_{ac} \left[\forall w \rightarrow \max\{d: \exists y[S\text{-play}(y) \land Fred \text{ read } y \text{ in } w \land |y| \geq d]\} \rightarrow \max\{d: \exists y[S\text{-play}(y) \land Fred \text{ read } y \text{ in } w' \land |y| \geq d]\} \rightarrow \max\{d: \exists y[S\text{-play}(y) \land Fred \text{ read } y \text{ in } w \land |y| \geq d]\} = 15
\]

where two worlds are considered distinct \((w' \neq w)\) iff the maximum # of plays Fred read in them is different

‘In the worlds where Fred read the most plays, he read 15’

- To satisfy the presupposition that \(C\) has multiple distinct elements, must be distinct epistemic possibilities

Majority Most Revisited

- Unified analysis of majority & relative most (Hackl 2009 and present extension)
 - \(\text{Most} = \text{many} + \text{-est}\)
 - Majority vs. relative readings reflect scope of \text{-est}
 - Majority most aligned to superlatives on absolute reading

- Facts explained
 - Cross-linguistic pattern: both readings available to superlative form of many

 \[
 \text{Cei mai multi oameni beau bere} \quad \text{Romanian} \quad (\text{Živanović 2008})

 ‘Most/the most people drink beer’
Majority Most Revisited

- Facts explained
 - Absence of *fewest* corresponding to majority *most* (Hackl 2009)

\[
\left[\text{NP} \quad \text{est} \quad \text{NP} \quad \text{d-many} \quad \text{NP} \quad \text{d-MEAS Shakespeare plays}]] \right] =
\{ x : x \text{ is a plurality of Shakespeare plays larger than any other non-overlapping plurality of Shakespeare plays} \}
\]

\[
\left[\text{NP} \quad \text{est} \quad \text{NP} \quad \text{d-few} \quad \text{NP} \quad \text{d-MEAS Shakespeare plays}]] \right] =
\{ x : x \text{ is a plurality of Shakespeare plays smaller than any other non-overlapping plurality of Shakespeare plays} \}
\]

- An objection diffused:
 - Absence of definite article with majority *most* (vs. absolute superlative *the longest*)

\[
\left[\text{NP} \quad \text{est} \quad \text{NP} \quad \text{d-long Shakespeare play}]] \right] =
\{ x : x \text{ is a Shakespeare play longer than any Shakespeare play} \}
\]
- Singleton set

\[
\left[\text{NP} \quad \text{est} \quad \text{NP} \quad \text{d-many} \quad \text{NP} \quad \text{d-MEAS Shakespeare plays}]] \right] =
\{ x : x \text{ is a plurality of Shakespeare plays larger than any other non-overlapping plurality of Shakespeare plays} \}
\]
- Not a singleton set
However...

Fred has read most Shakespeare plays
Plays Fred has read: 19/37 Plays Fred hasn't read: 18/37
INFELICITOUS (FALSE?)

Fred has read the most Shakespeare plays
Fred: 19 Sue: 18 Other members of C: <18
TRUE

Fred read the longest book
Book Fred read: 300pp Next-longest book: 299pp
TRUE

- Majority most (unlike both relative most and absolute superlatives) is insensitive to small differences in measure

Distribution of Most

The survey showed that most students (81.5%) do not use websites for math-related assignments

Source: COCA
Davies (2008-)

![Frequency distribution of percentages]
Majority vs. Relative Most

Fred has read most Shakespeare plays

\[\lambda x. \forall y: \text{S-play}(y)[x \neq y \rightarrow \max\{|d; x| \geq d\} > \max\{|d; y| \geq d\}]\]

- Comparison of (pluralities of) plays - direct

Fred has read the most Shakespeare plays

\[\lambda x. \forall y \in C[x \neq y \rightarrow \max\{|d; \exists z: \text{S-play}(z) \land x \text{ read } z \land |z| \geq d\} > \max\{|d; \exists z: \text{S-play}(z) \land y \text{ read } z \land |z| \geq d\}]}\]

- Comparison of readers - indirect

Set comparison is different

- Separate cognitive systems for precise and approximate quantity (Dehaene 1997 *inter alia*)
 - Digital vs. analog

- Approximate number system (ANS):
 - Involved in approx. arithmetic and set size comparison
 - Present in pre-verbal children, aphasia patients, cultures w/out complex number systems – and animals (lack representation of precise number)
 - ...but also active in verbal adults
 - Exhibits size & distance effects subject to Weber’s law
 - i.e., requires sufficient ratio between set sizes
Most and Analog Quantity

- **Use with non-enumerable sets (Solt ms.)**

 But like *most things*, obesity is not spread equally across social classes *(Mens Health, 23(7), p. 164, 2008)*

 cf. *But like more than half of things….*

 Most beliefs, worries, and memories also operate outside awareness *(Science News, 142(16), 1992)*

 cf. *More than half of beliefs, worries and memories…*

Most and Analog Quantity

- **Processing**

 Most of the dots are blue

 □ In timed task, verification exhibits size & distance effects *(Pietrowski et al. 2009)*

- **Acquisition**

 Most of the crayons are yellow

 □ Young children’s acquisition of *most* independent of mastery of large exact number *(Halberda et al. 2008)*

 □ But requires sufficient difference between set sizes
Analog Quantity Formally

- Approximate (analog) quantity comparison may be modeled via a semi-order on sets (van Rooij 2009)
- Transitive with respect to > but not ~, i.e. the following may obtain: x ~ y and y ~ z but x > z
- Ordering based on a ‘significantly greater than’ relationship

A structure S, > where S is a set and > is a binary relation on S, is a semi-order iff

∀x, y, z, v, w ∈ S:

a. ¬(x > x)

b. ((x > y) ∧ (v > w)) → ((x > w) ∨ (v > y))

c. ((x > y) ∧ (y > z)) → ((x > v) ∨ (v > z))

Most and Analog Comparison

- Logical form for majority most allows default interpretation relative to (semi-)order on sets
- Necessarily for non-enumerable domains
- By strengthening to stereotypical interpretation otherwise (Horn 1984)

\[\lambda x. \forall y : S \text{-play}(y)[x \neq y \rightarrow \max\{d : |x| \geq d\} > \max\{d : |y| \geq d\}] \]

\[\lambda x. \forall y : S \text{-play}(y)[x \neq y \rightarrow x > y] \]

- That for relative the most does not

\[\lambda x. \forall y \in C[x \neq y \rightarrow \max\{d : \exists z[S \text{-play}(z) \land x \text{ read } z \land |z| \geq d]\} > \max\{d : \exists z[S \text{-play}(z) \land y \text{ read } z \land |z| \geq d]\}] \]

- Not a comparison of sets
Summary

Various uses of most may be unified via:
- Degree operator analysis of superlative, with multiple scope options for superlative morpheme
- Degree operator analysis of many/much
- Extension of comparison classes to include sets of worlds
- Majority most exhibits properties that distinguish it from other most's
 - Argued to be related to potential for evaluation via analog quantity comparison

Acknowledgements

Support for this research was provided by the European Science Foundation (ESF) and the Deutsche Forschungsgemeinschaft (DFG) under the auspices of the EuroCORES Programme LogICCC
Thank you!

Stephanie Solt
solt@zas.gwz-berlin.de

References

References

Solt, S. (ms.). On orderings, measurement and quantification: the case of most and more than half. Manuscript.