On Hájek's Fuzzy Quantifiers "Probably" and "Many"

Petr Cintula

Institute of Computer Science
Academy of Sciences of the Czech Republic

Łukasiewicz logic Ł

Connectives: implication \rightarrow and 'falsum' \perp (we set $\neg \varphi = \varphi \rightarrow \bot$)

(Standard) semantics: evaluation is a mapping $e: FOR \rightarrow [0, 1]$ st:

$$e(\perp) = 0$$
 $e(\varphi \rightarrow \psi) = \min\{1, 1 - e(\varphi) + e(\psi)\}$

Axiomatic system: deduction rule is *Modus Ponens* (from φ and $\varphi \to \psi$ infer ψ); axioms are:

$$\varphi \to (\psi \to \varphi)$$

$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$$

$$((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi)$$

Completeness: Thm(L) = Taut(L)

More on Łukasiewicz logic

Troubles with connectives

$$\varphi \wedge \psi \equiv_{\mathsf{Bool}} \neg(\varphi \to \neg \psi) \equiv_{\mathsf{Bool}} \neg((\psi \to \varphi) \to \neg \psi)$$

$$\neg(\frac{1}{2} \to \neg \frac{1}{2}) \qquad \neg((\frac{1}{2} \to \frac{1}{2}) \to \neg \frac{1}{2})$$

$$\parallel \qquad \qquad \parallel$$

$$0 \qquad \qquad \qquad \frac{1}{2}$$

Thus we define:

$$\varphi \wedge \psi = \neg((\psi \to \varphi) \to \neg \psi) \quad e(\varphi \wedge \psi) = \min(e(\varphi), e(\psi))$$

$$\varphi \& \psi = \neg(\varphi \to \neg \psi) \quad e(\varphi \& \psi) = \max(0, e(\varphi) + e(\psi) - 1)$$

Funny observation: $(\varphi \land \neg \varphi) \to \bot$ IS NOT provable in Ł $(\varphi \& \neg \varphi) \to \bot$ IS provable in Ł

Two useful connectives: $\varphi \oplus \psi = \neg \varphi \to \psi \qquad \min(1, e(\varphi) + e(\psi)) \\ \varphi \ominus \psi = \neg(\varphi \to \psi) \qquad \max(0, e(\varphi) - e(\psi))$

On two conjunctions

& is not idempotent! Girard example:

- A) If I have one dollar, I can buy a pack of Marlboros $D \rightarrow M$
- B) If I have one dollar, I can buy a pack of Camels $D \rightarrow C$

Therefore: $D \to M \wedge C$ i.e.,

C) If I have one dollar, I can buy a pack of Ms and pack of Cs

BETTER: $D \& D \rightarrow M \& C$ i.e.,

C') If I have one dollar and I have one dollar,

I can buy a pack of Ms and pack of Cs

On two conjunctions (cont.)

Consider three glasses of beer: 0.3L, 0.5L, and 1L.

Consider predicates $P_a(x)$: 'Petr can drink x in a minutes'

- There is a beer Petr can drink in one minute
- Petr can drink any of the beers in two minutes
- Petr can drink any of the beers in three minutes

FALSE

• Petr can drink *all the* beers in three minutes

$$(\forall x)\varphi \to \varphi(a) \land \varphi(b)$$
 but not $(\forall x)\varphi \to \varphi(a) \& \varphi(b)$

$$\varphi \wedge \psi \to \chi$$
 is equivalent to $(\varphi \to \chi) \vee (\psi \to \chi)$

On transitivity

We define a 'fuzzy indistinguishability' relation

$$Exy = \max\{0, 1 - |x - y|\}$$

Then in Łukasiewicz logics holds:

$$||Exy \& Eyz \rightarrow Exz|| = 1$$

Re define other fuzzy relation (assume that $0 \le a \le 1$):

$$E_a xy = \min(1, \max(0, 1 + a - |x - y|))$$

Note that if $|x-y| \leq a$ then $E_a xy = 1$

Then in Łukasiewicz logics holds:

$$||(\forall xyz)(Exy \& Eyz \rightarrow Exz)|| = 1 - a$$

On generalized quantifiers

Note: (generalized) quantifiers are functions from sets of individuals to $\{0,1\}$

Thus: generalized quantifiers are special unary predicates

Thus our proposal is obvious:

fuzzy generalized quantifiers are functions from sets of individuals to [0,1]

Note: if most participant are vegetarians, most of the food at the banquet is vegetarian

Probability inside Łukasiewicz logic: language

The language of $\mathbf{FP}(\mathsf{L})$ has a non-empty set V of the crisp (two-valued) propositional variables. It has three kinds of formulas:

- NON-MODAL: The formulas built from the propositional variables in the usual way, using crisp connectives ∧ and ¬ i.e., a classical formulas
- ATOMIC MODAL: The formulas built from the non-modal formulas by using new fuzzy modality P i.e., formulas $P\varphi$, where φ is the non-modal formula,
- **EXTENDED MODAL:** The formulas built from the atomic modal formulas in the usual way, using connectives of the Łukasiewicz logic: $\neg_{\underline{\mathbb{L}}}$, $\rightarrow_{\underline{\mathbb{L}}}$.

Probability inside Łukasiewicz logic: semantics

The models of $\mathbf{FP}(\mathbf{L})$ are probability Kripke structure $\mathbf{K} = \langle W, e, \mu \rangle$ where:

- W is a non empty set of possible worlds,
- $e: W \times VAR \rightarrow \{0,1\}$ is a crisp evaluation of the propositional variables in each world
- $\mu: 2^W \to [0,1]$ is a finitely additive probability measure st. for each variable p, the set $\{w \mid e(w,p)=1\}$ is measurable.

Probability inside Łukasiewicz logic: definition of truth

Let $\mathbf{K} = \langle W, e, \mu \rangle$ be a probability Kripke structure. The evaluation e can be extended to the formulas of the $\mathbf{FP}(\mathsf{L})$:

• NON-MODAL: an usual extension of the evaluation of the propositional variables to the non-modal formulas.

• ATOMIC MODAL: $e(\hat{w}, P\varphi) = \mu\{w \mid e(w, \varphi) = 1\}$

• **EXTENDED MODAL:** also an usual extension of the evaluation of the atomic modal formulas to the modal formulas

Probability inside Łukasiewicz logic: axiomatic system

(FP0) the axioms of the Łukasiewicz logic

(BOOL)
$$\varphi \vee \neg \varphi$$

for non-modal φ

(FP1)
$$P(\varphi \to \psi) \to_{!\! L} (P\varphi \to_{!\! L} P\psi)$$

$$(\mathsf{FP2}) \neg_{\underline{k}} P(\varphi) \rightarrow_{\underline{k}} P(\neg \varphi)$$

(FP3)
$$P(\varphi \lor \psi) \to_{\mathbb{L}} ((P\psi \oplus (P\varphi \ominus P(\varphi \land \psi)))$$

The deduction rules are modus ponens and the necessitation of P: from φ infer $P\varphi$ (for φ being a non-modal formula)

Probability inside Łukasiewicz logic: completeness

Completeness: Let Ψ be a modal formula and \mathbf{T} a finite modal theory over $\mathbf{FP}(\mathsf{L})$. Then $\mathbf{T} \vdash \Psi$ iff $e_{\mathbf{K}}(\Psi) = 1$ for each probability model \mathbf{K} of the theory \mathbf{T} .

Particular cases and modifications:

Quantifier 'many' (in KF with n worlds)

$$e(\hat{w}, M\varphi) = \frac{1}{n} \sum_{w \in W} e(w, \varphi)$$

Modification of definition of semantics

- $e: W \times VAR \rightarrow [0, 1]$
- $\mu_w: [0,1]^W \to [0,1]$ is any function

Thank you for you attention

Thank you for you attention

(and sorry for the examples)